Coulomb's Law

Recall from **Coulomb's Law of Force** that a charge Q_2 located at point $\overline{r_2}$ applies a force F_1 on charge Q_1 (located at point $\overline{r_1}$):

$$\mathbf{F}_{1} = \frac{1}{4\pi\varepsilon_{0}} \frac{Q_{1}Q_{2}}{R^{2}} \hat{a}_{21} = \frac{Q_{1}Q_{2}}{4\pi\varepsilon_{0}} \frac{\overline{r_{1}} - \overline{r_{2}}}{\left|\overline{r_{1}} - \overline{r_{2}}\right|^{3}}$$

Likewise, from the Lorentz Force Law, we know that the force F_1 on a charge Q_1 located at point $\overline{r_1}$ is attributed to an electric field located at $\overline{r_1}$:

$$\mathbf{F}_1 = \mathbf{Q}_1 \mathbf{E}(\overline{\mathbf{r}}_1) \implies \mathbf{E}(\overline{\mathbf{r}}_1) = \frac{\mathbf{F}_1}{\mathbf{Q}_1}$$

Inserting Coulomb's Law of Force into this equation, we get the electric field at location $\overline{r_1}$, generated by charge Q_2 located at

$$\mathbf{E}(\overline{\mathbf{r}}) = \frac{\mathbf{F}_1}{\mathbf{Q}_1} = \frac{\mathbf{Q}_2}{4\pi\varepsilon_0} \frac{\hat{a}_{21}}{\mathbf{R}^2}$$

Jim Stiles

ŗ!

In general, we can say the electric field $\mathbf{E}(\mathbf{\bar{r}})$ at location $\mathbf{\bar{r}}$, generated by a charge Q at point $\mathbf{\bar{r}}$, is:

$$\mathbf{E}(\overline{\mathbf{r}}) = \frac{Q}{4\pi\varepsilon_0} \frac{\hat{a}_R}{R^2} = \frac{Q}{4\pi\varepsilon_0} \frac{\overline{\mathbf{r}} - \overline{\mathbf{r}'}}{|\overline{\mathbf{r}} - \overline{\mathbf{r}'}|^3}$$

This is Coulomb's Law \parallel It describes the electric field $\mathbf{E}(\overline{\mathbf{r}})$ at location $\overline{\mathbf{r}}$ that is created by a charge Q at location $\overline{\mathbf{r}}'$.

Note that:

$$\hat{a}_{R} \doteq \frac{\overline{r} - \overline{r'}}{|\overline{r} - \overline{r'}|}$$

Therefore, if the charge Q is at the origin (i.e., $\vec{r} = 0$), then:

$$\hat{a}_{R} = \frac{\overline{r}}{|\overline{r}|} = \hat{a}_{r}$$

Recall that the base vector \hat{a}_r always **points away** from the origin. In other words, a charge located at the origin creates an electric field vector that points in the direction of base vector \hat{a}_r (i.e., **away from the origin**) at all points \overline{r} !

Likewise, **if** the charge is at the origin, then:

$$R = |\overline{\mathbf{r}}| = r$$

In other words, the **magnitude** of the electric field vector is **proportional** to $1/r^2$. As a result, the magnitude of the electric field is dependent on its distance from the origin (i.e., distance from the charge). Therefore, **if** $\vec{r} = 0$:

$$\mathbf{E}(\overline{\mathbf{r}}) = \frac{Q}{4\pi\varepsilon_0} \frac{\hat{a}_r}{r^2} = \frac{Q}{4\pi\varepsilon_0} \frac{\overline{\mathbf{r}}}{r^3}$$

Q: What is the curl of $E(\bar{r})$??

